| s

n=0 r/2

where & =47 — A@/4. Thus the Bragg reflections
do not mix the two senses of circular polarization
and we have

ju=22n)emi? [ v, f,dodk, (B3)

where we have integrated over dE and the 3fy/9E

= - 6(E — Eg) factor in f;, causes the dodk, integra-
tion to be restricted to the Fermi surface. Sub-
stituting (5) in (B3) and noting from (6) and (12)
that qv,/d,= (1 -b,/d,)/T we have
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i nr/2+® i} @ ) ot/
- f g2t do - g2t '"'/2)Q,e' 00T g’ = 0,
n n=0 0
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(B2)

()]

x [1-Q.e ' "dpdk, , (B4)

r

. _2tem —1~fv2 eb, _imwu,
Is= rn)? or | @, e

where we have dropped a factor of ef ™%’ The
entire ¢ dependence of the integrand is in (¢ -¢,),
which may be replaced by ¢/w, and integrated
over 0L < & in each of the four sections of the
hole orbit (for electron orbits there is no ¢ de-
pendence and a factor 27 is obtained from the ¢
integration) to yield Eq. (10).
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Oconsider, for instance, an intrinsic semiconductor.
The current associated with a long-wavelength phonon is
negligible because the valence electrons follow the ions
in their motion even though those same electrons give no
contribution to the zero-frequency conductivity.

I1Besides the usually negligible contribution mentioned
above collision drag also enters the jellium calculation
through the distribution function.

2we have corrected an unimportant sign mistake in
(I5).

3From Figs. 1(a) and 1(b) one easily sees that A¢/4
=2cos"'(K/2k,), where k?=k% k2.

4The —1 in N(1/G —1) is important only for large fields
where it makes the attenuation approach zero.
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The density-matrix approach due to March and his collaborators is used to obtain the elec-

tronic density of states of liquid metals.

A model potential is used for liquid aluminum, and

the density of states is calculated for both completely random and correlated systems. Re-
sults are compared with previous calculations, and nearly-free-electron-like behavior is

found for liquid aluminum.

I. INTRODUCTION

In recent years the study of electronic states in
liquid metals! has received considerable attention.
The effort has been mostly directed towards de-
veloping formal techniques for tackling the prob-
lem of cellular disorder. There have been rather

few attempts to evaluate the theoretical expres-
sions numerically for real systems.

Ballentine® has calculated the density of states
in several liquid metals by using the Green’s-func-
tion method of Edwards.® He used a local energy -
independent Heine-Abarenkov-type potential. Bal-
lentine used Edwards’s theory but replaced the
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free-electron propagator in the second-order self-
energy with the exact propagator. This is equiv-
alent to extracting a particular set of diagrams
from the self-energy expression and summing
these diagrams to all orders in perturbation.
There have also been calculations for some liquid
metals using a nonlocal optimum model potential
employing essentially a perturbation-theory ap-
proach.*

A nonperturbative approach has also been pro-
posed recently by Rousseau ef al.® They have used
a model of independent pseudoatoms to obtain the
partition function of a random array as well as a
correlated arrangement of scatterers. They have
obtained the density of states for liquid Be.

In this paper we report a calculation of the den-
sity of states in liquid aluminum using essentially
the approach of Rousseau ef al. Aluminum was
chosen because for this system a number of cal-
culations for the density of states have been at-
tempted using other methods.?’® The results could
therefore be compared with the results of other
theoretical investigations and experimental mea-
surements.’

In Sec. II we outline the basic approach and ap-
proximations of the pseudoatom model. We give
in Sec. III the details of applications to aluminum.
The results are discussed in Sec. IV.

II. OUTLINE OF THEORY

We shall summarize the theory of independent
pseudoatoms due to Rousseau et al.° in order to
establish the notation and provide a framework
for the discussion of results. There are two es-
sential steps in the calculation of the density of
states in a liquid. First the partition function is
obtained for a given configuration. Then the en-
semble averaging is done to obtain the density of
states.

The total potential V(T) in the assembly is re-
garded as a sum of localized potentials v(T) cen-
tered on ﬁ; , the position of the ith ion:

V(r)= 2 v(¥-R,). 1)
R

The partition function is defined by
Z(B)= 2., exp(~ Be,)
=J ¢(f, § par, @)

where €; is the ith eigenvalue of the single-particle
Hamiltonian, H= -VZ%+ V(T), B=1/kT, and
C(T, To; B) is the canonical density matrix given by

C(T, To; B) =2 9 F(D)dy(T) exp(- Be,) . (3

If we have a slowly varying potential, the eigen-
values change by V, whereas the wave functions
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remain essentially unchanged. Then for the po-
tential given in Eq. (1) we can write

C(T, T; )=Co(T, T; B exp[- BL,0(F -R))],
@)
where Co(;:, x_"o; R) is thefree-particle density ma-

trix. If V is not slowly varying, we generalize (4)
to

C(F, Ty; M= Co(T, T; B)expl- pU(T, Ty; B)] .
(5)
Here U is called the effective potential matrix.
U(T, T; p)=U(T; B) defines the pseudoatom. We
further write U(T; §)=Jg,u(F - R,; B) so that the
system may be looked upon as a collection of in-
dependent pseudoatoms described by the above
canonical density matrix involving effective poten-
tial U instead of actual potential V(T).
A function analogous to the Mayer function in
classical statistical mechanics is introduced:

f(¥; B)=exp[- Bu(T; B)]-1, (6)
so that

C(F; )= CylF; ﬁ)<1+§,f(?-ﬁ,; )
i

* %‘;;f(;—ﬁ‘, B)f(F-ﬁj, [3)+--.> .7
iy

The series (7) has to be ensemble averaged. In
order to find the configurational averages for a
set of correlated scatterers, higher-order cor-
relation functions are needed. Three-body cor-
relation functions are expressed in terms of two-
body correlation functions by the Abe approxima-
tion:

Pm(”u 72, 7’3)2%[g(1’12)g(713)+g(721)g(1’23)
+8(ry)glry)]. (8)

Similarly, the nth-order correlation functions may
be expressed in terms of g(r;,). Thus

Z(B)=(2mpB)3/? [1+pfd?f(F; B)+/ dr, f(T;, B)

X (2%926 (Tq)+eee +—nl—lp" G™H (1)) ++ - >:| , (9)

with G(T)= [ dT,f(T,; B g(7,), and so on. The
terms in the series (9) can be summed to yield

Z(p)=(2mp)™/2

% (1 +fd;‘ JAE 5){9§P[PG(;1)] - 1}> (10)

G(T)

For a model of random pseudoatoms we have g(7)
=1, so that Eq. (10) reduces to
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Z(p)= (2782 exp[ Ba(B)] , (11)

where a(p)=(p/B) [ dTf(T, ) and p is the number
of ions per unit volume.

The partition function Z( ) is related to the den-
sity of states n(E) by the Laplace transformation

2(B)= [ n(E) exp(- BE) dE . (12)
III. APPLICATION TO ALUMINUM

In order to calculate the electronic density of
states, we have to start with a suitable choice of
the potential. Here we use a potential in the fol-
lowing analytical form due to Green et al.®:

v(7)=2(Ny - 2)/7, (13)
where
y=1-{[exp(»/d) - H]+ 1}'1 , (14)

= = 2
9(;’ ;0’ ;,): exp(l r—rol /ZB)

z is the number of nuclear protons, N is the num-
ber of core electrons, and H and d are two param-
eters. These parameters are determined by fit-
ting the energy values and wave functions with
those calculated from the Hartree-Fock-Slater
method by Herman and Skillman.® The values of
these parameters for aluminum used by us are
H=1.8312 and d=0.7290. This simple analytical
form which yields the same energies and wave func-
tions as the Herman-Skillman potential is thus a
reasonable choice for the single-center potential.
With this choice the effective potential matrix can
be determined in an analytical form.

Hilton et al.!® have shown that in the linear ap-
proximation [ignoring VU(T)] the effective poten-
tial matrix U(T; B) is written as

U(F, To; B)= | S(T, To, ¥)0(F)dT" (15)
with

We are interested in the diagonal element U(T; B)
given by
- 1 AT v(F)exp(-2 1T -7 |2
U(r;#)=;r‘;;f v(r’) exp( /B) )

IT-7|

1)

Using the form (13) for v(r), we obtain

IT-F 14 7 -Fol (|?-?'1+[?'_F0|)2>
26 F-F 1 1F 1,1 P

_ 2Nd 7B 1/2 - (_nz)
U, B)=- (l—H)YB(—i) 2. (-1) lexp SPd?

n

2\'2/  np nr <-nr } _,,l
xerfc[</—3> (r+4—d>:l%[exp<—d->—exp 2 > d } .
(18)
As mentioned in Sec. II, this approach is valid for

06

04

<(p

Q02

. FIG. 1. Plot of a(B) vs B in
a.u. Solid line represents the
results for the random assem-
bly; dashed line shows them
for the correlated assembly.
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FIG. 2. Calculated den-
sities of states. Solid line
is for the random assembly;
dashed line is for the cor-
related one.
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a slowly varying potential or a weak potential. We
cannot apply the method in this form for a real
metal having strongly attractive potentials and pos-
sessing bound states. Hence it is necessary to
orthogonalize the density matrix to the known bound
states of the system following the method due to

Hilton et al.'® The orthogonalized-density- matrix
approach is applicable for a strong scattering po-
tential also. 51!

Now the orthogonalized density matrix is used to
calculate Z(B) for both random and correlated as-
sembly. In the latter case the required radial dis-

0.04 T T T T

0.03F

0.02

DENSITY OF STATES

0.01

FIG. 3. Comparison of den-
sities of states---, free-elec-
tron scheme; ----, Edwards’s
theory (Ref. 2); -...-, pseudo-

potential method (Ref. 14);

++, Monte Carlo method (Ref.
6); ---, soft x-ray measure-
ments of Rooke (Ref. 7); -,
present calculation for random
assembly; --.--, present cal-
culation for correlated system.
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tribution functions are taken from the numerical
solutions of Percus-Yevick equations of the hard-
sphere assembly. '2

In principle, the inversion of the partition func-
tion gives the density of states, but difficulty arises
in a calculation, because Z(B) is known numerically
for certain values of 8. We perform the inversion
by making use of the method of first-order steepest
descent due to Hoare and Ruijgork.'® They have
shown that this method gives reasonably good re-
sults when compared to exact analytical solutions
for some simple cases.

IV. DISCUSSION

In Fig. 1 we plot @(B) for both the random and
correlated cases. It is seen that the difference be-
tween the results for random and correlated as-
sembly increases with increasing 8. For small val-
ues of B the curve for the random assembly lies
close to that for the correlated one.

The density of states is shown in Fig. 2 for both
the random and correlated systems for a wide range
of energy. As mentioned above, an analytical
evaluation of the density of states fromthe partition
function is not possible here; therefore, we have
calculated numerically the density of states by
Laplace inversion of (16) using six values of B
(8=0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 in a. u.).

The density of states for liquid aluminum obtained
by the present method is compared with the results

4383

of other calculations in Fig. 3. The calculations
by other workers were based on free-electron
scheme, Edwards’s theory, 2 Monte Carlo calcula-
tions, ® and the pseudopotential method.'* The den-
sity-of-states curve obtained from the soft x-ray
emission measurements of Rooke’ is also shown.
The pseudoatoms tend to lower the value of the
density of states at higher energies as compared to
free-electron results. For locating the low-energy
conduction edge we shall have to undertake tedious
calculations using values of Z (8) at many values of
B higher than those used here.

The singularities in the density of states are
washed out in our calculations for the disordered
assembly. We also find that our results for the
density of states are close to those for the free-
electron scheme. This shows the nearly-free-elec-
tron-like behavior of electrons in liquid aluminum.
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